### H. T. DIEP

Professor University of Cergy-Pontoise, France

# STATISTICAL PHYSICS

# Fundamentals and Application to Condensed Matter

### Lectures, Problems and Solutions



ARTISTIC VIEW OF A VORTEX BOOK, 647 PAGES, 15 CHAPTERS, TO APPEAR IN APRIL 2015, BY WORLD SCIENTIFIC

To my wife and our children Samuel, Tuan, Kim and Sarah.

To my mother.

## Foreword

Statistical mechanics provides general methods to study properties of systems composed of a large number of particles. It establishes general formulas connecting physical parameters to various physical quantities. When parameters of a system such as interaction between particles and temperature are known, one can deduce its macroscopic properties. In general, microscopic mechanisms leading to interactions are provided by quantum mechanics. The combination of statistical mechanics and quantum mechanics has provided an understanding of properties of matter leading to spectacular technological innovations and discoveries which have radically changed our daily life since the sixties.

This book is based on the author's lectures for students of the third year of the Bachelor's degree in Physics. The second part of the book treats selected advanced subjects taught at the Master's level. In each chapter, fundamental notions and techniques are presented and followed by applications chosen among frequently encountered phenomena. Demonstrations leading to main results are given in details.

In the first part, after an introduction of basic definitions and mathematical tools (chapter 1), the book covers the foundation of statistical physics at equilibrium: starting from the fundamental postulate, the book deals with systems under various situations going from isolated systems (chapter 2) and systems maintained at a constant temperature (chapter 3) to open systems (chapter 4). The main properties of free fermions (chapter 5) and free bosons (chapter 6) are studied to a great extent. The first part ends with chapter 7 where the method of second quantization is shown. This method, though conceptually more abstract than the Schrödinger equation, is technically less cumbersome to handle, and is very useful in the study of weakly interacting many-particle systems. A large number of applications of this method is found in the remaining chapters.

In the second part, advanced techniques and applications in condensed matter are presented. Selected topics in condensed matter include vibrations of atoms in crystals, conducting electrons in metals and superconductors, band structures in semiconductors, and magnetic properties of materials. Statistical physics contributes with quantum mechanics to the success of these fields in the last fifty years. In chapter 8 the crystalline symmetry is presented with all necessary notions for studying properties of electrons and atoms in crystals. In chapter 9 systems of interacting atoms in crystals are considered. Quantized atom vibrations are called phonons which dominate thermodynamic properties of solids. Systems of interacting conducting electrons are studied in chapter 10 along with general properties of Fermi liquids. The origin of energy bands of electrons in semiconductors is shown in chapter 11. Conducting electrons are at the heart of charge and spin transport phenomena with an enormous number of applications. The spin carried by an electron plays thus a very important role in condensed matter physics. Magnetic properties due to spins cannot be separated from other properties of matter. Note that systems of interacting spins constitute one of the most important subjects in statistical physics. They are studied in chapter 12 where collective excitations, called spin waves or magnons, are shown in details. The abundance of magnetic materials, natural or artificial compounds, provides an inexhaustible source of applications. Chapter 13 deals with the phase transition in spin systems where basic notions such as symmetry breaking and universality class are introduced. The mean-field approximation and the Landau-Ginzburg theory for second-order phase transitions are presented. The concept of the renormalization group is described. In chapter 14, the Ginzburg-Landau theory for the superconductivity is developed to explain properties of type I and type II superconductors. The microscopic Bardeen-Cooper-Schrieffer theory for conventional superconductors is presented in details in this chapter. The second part of the book ends with chapter 15 where basic notions on systems out of equilibrium and the Boltzmann's equation are introduced. As applications of the Boltzmann's equation, properties of electron transport in metals and semiconductors are studied to a great extent.

In the third part of the book, solutions of problems are given. These problems are conceived for self-training and to help the reader discover new related phenomena which are complementary to the lectures.

H. T. Diep, Professor of Physics, University of Cergy-Pontoise, France.

## Acknowledgments

I am grateful to my many colleagues at the University of Cergy-Pontoise for sharing uncountable stimulating moments in my professional life and for their precious friendship during the last 25 years. My sincere gratitude goes to all the people who have contributed in one way or another to forging the site into the education and research institution that it is today. Thanks to them, it is the place where I go to work every day with enthusiasm and eagerness.

I am in particular indebted to numerous administrative staffs who have been working with me over the years, for their generosity and for carrying out with me our collective duties in joy and mutual trust. I am proud of what we have achieved together. It was always a team effort which is key in overcoming obstacles and fighting adversity.

I would like to express here my deep affection for my former and current doctorate students with whom I shared innumerable wonderful moments not only in our research activities but also in discussions on many subjects of life.

H. T. Diep

# Contents

| For | reword  |          |                                           | vii |
|-----|---------|----------|-------------------------------------------|-----|
| Ac  | knowle  | edgment. | s                                         | ix  |
| Lis | st of P | roblems  |                                           | xxi |
| Fu  | ındaı   | nenta    | ls of Statistical Physics                 | 3   |
| 1.  | Basic   | c Concep | pts and Tools in Statistical Physics      | 5   |
|     | 1.1     | Introd   | uction                                    | 5   |
|     | 1.2     |          | inatory analysis                          | 6   |
|     |         | 1.2.1    | Number of permutations                    | 6   |
|     |         | 1.2.2    | Number of arrangements                    | 6   |
|     |         | 1.2.3    | Number of combinations                    | 7   |
|     | 1.3     | Proba    | bility                                    | 7   |
|     |         | 1.3.1    | Definition                                | 7   |
|     |         | 1.3.2    | Fundamental properties                    | 8   |
|     |         | 1.3.3    | Mean values                               | 9   |
|     | 1.4     | Statist  | tical distributions                       | 11  |
|     |         | 1.4.1    | Binomial distribution                     | 11  |
|     |         | 1.4.2    | Gaussian distribution                     | 12  |
|     |         | 1.4.3    | Poisson law                               | 14  |
|     | 1.5     | Micros   | states - Macrostates                      | 15  |
|     |         | 1.5.1    | Microstates - Enumeration                 | 15  |
|     |         | 1.5.2    | Macroscopic states                        | 17  |
|     |         | 1.5.3    | Statistical averages - Ergodic hypothesis | 17  |
|     | 1.6     | Statist  | tical entropy                             | 18  |

|    | 1.7    | Conclusion                                             | 19 |
|----|--------|--------------------------------------------------------|----|
|    | 1.8    | Problems                                               | 19 |
| 2. | Isola  | ted Systems: Micro-Canonical Description               | 23 |
|    | 2.1    | Introduction                                           | 23 |
|    | 2.2    | Fundamental postulate                                  | 23 |
|    | 2.3    | Properties of an isolated system                       | 25 |
|    |        | 2.3.1 Spontaneous evolution of an isolated system to-  |    |
|    |        | ward equilibrium                                       | 25 |
|    |        | 2.3.2 Exchanges of heat and volume                     | 26 |
|    |        | 2.3.3 Exchange of particles                            | 27 |
|    |        | 2.3.4 Statistical distribution of an internal variable | 27 |
|    | 2.4    | Phase space - Density of states                        | 29 |
|    |        | 2.4.1 Density of states                                | 29 |
|    |        | 2.4.2 Density of states of free quantum particles      | 30 |
|    |        | 2.4.3 Density of states of free classical particles    | 32 |
|    | 2.5    | Applications of the micro-canonical method             | 33 |
|    |        | 2.5.1 Example 1: two-level systems                     | 34 |
|    |        | 2.5.2 Example 2: Classical ideal gas                   | 36 |
|    | 2.6    | Conclusion                                             | 37 |
|    | 2.7    | Problems                                               | 37 |
| 3. | System | ms at a Constant Temperature: Canonical Description    | 45 |
|    | 3.1    | Canonical probability                                  | 45 |
|    | 3.2    | Partition function                                     | 47 |
|    | 3.3    | Properties of a system at a constant temperature       | 48 |
|    | 3.4    | Statistical distribution of an internal variable       | 50 |
|    | 3.5    | Spontaneous evolution of a canonical system            | 51 |
|    |        | 3.5.1 Criterion for equilibrium                        | 51 |
|    |        | 3.5.2 Direction of spontaneous evolution               | 53 |
|    | 3.6    | Applications of the canonical method                   | 54 |
|    |        | 3.6.1 Systems of identical independent particles       | 54 |
|    |        | 3.6.2 Classical ideal gas                              | 56 |
|    |        | 3.6.3 Two-level systems                                | 57 |
|    |        | 3.6.4 Theorem of equipartition of energy               | 58 |
|    | 3.7    | Conclusion                                             | 60 |
|    | 3.8    | Problems                                               | 61 |
| 4. | Open   | Systems at Constant Temperature: Grand-                |    |

 $Statistical\ Physics\ \text{-}\ Fundamentals\ and\ Application\ to\ Condensed\ Matter$ 

xii

| - |      | 27/2012 | 25.3 |
|---|------|---------|------|
| 1 | COPT | ten     | 10   |
| 0 | 016  | 00.10   | 63   |

|                                                 | Car              | nonical Description                                               | 67 |  |  |  |  |  |
|-------------------------------------------------|------------------|-------------------------------------------------------------------|----|--|--|--|--|--|
|                                                 | 4.1 Introduction |                                                                   |    |  |  |  |  |  |
|                                                 | 4.2              | Grand-canonical probability                                       | 67 |  |  |  |  |  |
|                                                 | 4.3              | Grand partition function $Z$ - Grand potential $J$ 6              |    |  |  |  |  |  |
|                                                 | 4.4              | General properties of grand-canonical systems                     | 70 |  |  |  |  |  |
|                                                 | 4.5              | Spontaneous evolution of a grand-canonical system 7               |    |  |  |  |  |  |
| 4.6 Systems of identical, independent particles |                  |                                                                   |    |  |  |  |  |  |
|                                                 |                  | 4.6.1 Factorization of $\mathcal{Z}$                              | 75 |  |  |  |  |  |
|                                                 |                  | 4.6.2 Bose-Einstein distribution                                  | 76 |  |  |  |  |  |
|                                                 |                  | 4.6.3 Fermi-Dirac distribution                                    | 76 |  |  |  |  |  |
|                                                 |                  | 4.6.4 Maxwell-Boltzmann distribution                              | 77 |  |  |  |  |  |
|                                                 | 4.7              | Applications of the grand-canonical method                        | 77 |  |  |  |  |  |
|                                                 |                  | 4.7.1 Classical ideal gas                                         | 77 |  |  |  |  |  |
|                                                 |                  | 4.7.2 Two-level systems                                           | 78 |  |  |  |  |  |
|                                                 | 4.8              | Conclusion                                                        | 80 |  |  |  |  |  |
|                                                 | 4.9              | Problems                                                          | 80 |  |  |  |  |  |
| 5.                                              | Free 1           | ee Fermi Gas                                                      |    |  |  |  |  |  |
|                                                 | 5.1              | Introduction                                                      | 85 |  |  |  |  |  |
|                                                 | 5.2              | Fermi-Dirac distribution                                          | 85 |  |  |  |  |  |
|                                                 | 5.3              | General properties of a free Fermi gas                            | 86 |  |  |  |  |  |
|                                                 |                  | 5.3.1 General formulas                                            | 86 |  |  |  |  |  |
|                                                 |                  | 5.3.2 Formulas for large systems                                  | 88 |  |  |  |  |  |
|                                                 | 5.4              | Properties of a free Fermi gas at $T = 0 \dots \dots \dots \dots$ | 90 |  |  |  |  |  |
|                                                 |                  | 5.4.1 Fermi energy                                                | 90 |  |  |  |  |  |
|                                                 |                  | 5.4.2 Total average kinetic energy                                | 91 |  |  |  |  |  |
|                                                 | 5.5              | Properties of a free Fermi gas at low temperatures                | 91 |  |  |  |  |  |
|                                                 |                  | 5.5.1 Sommerfeld's expansion                                      | 91 |  |  |  |  |  |
|                                                 |                  | 5.5.2 Chemical potential, average energy and calorific            |    |  |  |  |  |  |
|                                                 |                  | capacity                                                          | 92 |  |  |  |  |  |
|                                                 | 5.6              | Free Fermi gas at the high-temperature limit                      | 92 |  |  |  |  |  |
|                                                 | 5.7              | Applications                                                      | 93 |  |  |  |  |  |
|                                                 |                  | 5.7.1 Paramagnetism of conducting electrons in metals             | 93 |  |  |  |  |  |
|                                                 |                  | 5.7.2 Thermo-ionic emission                                       | 95 |  |  |  |  |  |
|                                                 | 5.8              | Conclusion                                                        |    |  |  |  |  |  |
|                                                 | 5.9              | Problems                                                          | 96 |  |  |  |  |  |
| 6.                                              | Free 1           | Boson Gas                                                         | 99 |  |  |  |  |  |

|    | 6.1   | Introduction                                                | 99  |
|----|-------|-------------------------------------------------------------|-----|
|    | 6.2   | Bose-Einstein distribution                                  | 99  |
|    | 6.3   | General properties of a free boson gas                      | 100 |
|    |       | 6.3.1 General formulas                                      | 100 |
|    |       | 6.3.2 Formulas for large systems                            | 102 |
|    | 6.4   | High-temperature limit                                      | 103 |
|    | 6.5   | Bose-Einstein condensation                                  | 104 |
|    | 6.6   | Properties at temperatures higher than $T_B$                | 105 |
|    | 6.7   | Applications                                                | 108 |
|    |       | 6.7.1 Photons: black-body radiation                         | 108 |
|    |       | 6.7.2 Helium-4                                              | 112 |
|    | 6.8   | Conclusion                                                  | 113 |
|    | 6.9   | Problems                                                    | 113 |
| 7. | Syste | ems of Interacting Particles: Method of Second Quantization | 115 |
|    | 7.1   | Introduction                                                | 115 |
|    | 7.2   | First quantization: symmetric and antisymmetric wave        |     |
|    |       | functions                                                   | 116 |
|    | 7.3   | Representation of microstates by occupation numbers         | 120 |
|    | 7.4   | Second quantization: the case of bosons                     | 121 |
|    |       | 7.4.1 Hamiltonian in second quantization                    | 121 |
|    |       | 7.4.2 Properties of boson operators                         | 125 |
|    | 7.5   | Second quantization: the case of fermions                   | 126 |
|    | 7.6   | Field operators                                             | 129 |
|    | 7.7   | Hartree-Fock approximation                                  | 131 |
|    | 7.8   | Conclusion                                                  | 134 |
|    | 7.9   | Problems                                                    | 134 |
|    |       |                                                             |     |

## Application to Condensed Matter

## 137

| 8. | Symmetry in Crystalline Solids |                                     |     |  |  |  |  |  |  |
|----|--------------------------------|-------------------------------------|-----|--|--|--|--|--|--|
|    | 8.1                            | Crystalline symmetry                | 139 |  |  |  |  |  |  |
|    | 8.2                            | Reciprocal lattices                 | 141 |  |  |  |  |  |  |
|    | 8.3                            | Wave-vector space - Brillouin zones | 144 |  |  |  |  |  |  |
|    | 8.4                            | Sum rules                           | 146 |  |  |  |  |  |  |
|    | 8.5                            | Fourier analysis                    | 148 |  |  |  |  |  |  |
|    | 8.6                            | Representation in $\vec{k}$ -space  | 150 |  |  |  |  |  |  |
|    | 8.7                            | Conclusion                          |     |  |  |  |  |  |  |

| <i>a</i> |
|----------|
| Contents |

|     | 8.8    | Problems                                                    | 150 |  |  |  |  |  |
|-----|--------|-------------------------------------------------------------|-----|--|--|--|--|--|
| 9.  | Intera | acting Atoms in Crystals: Phonons                           | 153 |  |  |  |  |  |
|     | 9.1    | Introduction                                                |     |  |  |  |  |  |
|     | 9.2    | Vibrations in one dimension                                 |     |  |  |  |  |  |
|     |        | 9.2.1 Equation of motion                                    |     |  |  |  |  |  |
|     |        | 9.2.2 Dispersion relation                                   | 156 |  |  |  |  |  |
|     | 9.3    | Vibrations in two and three dimensions                      | 157 |  |  |  |  |  |
|     | 9.4    | Quantization of vibration: phonons                          | 161 |  |  |  |  |  |
|     |        | 9.4.1 Normal coordinates, vibration energy                  |     |  |  |  |  |  |
|     |        | 9.4.2 Quantization of vibration                             | 162 |  |  |  |  |  |
|     | 9.5    | Thermal properties of phonons                               | 164 |  |  |  |  |  |
|     |        | 9.5.1 Density of modes                                      | 165 |  |  |  |  |  |
|     |        | 9.5.2 Einstein model and Debye model                        | 166 |  |  |  |  |  |
|     | 9.6    | Phonons in a condensed gas of Helium-4                      | 170 |  |  |  |  |  |
|     | 9.7    | Conclusion                                                  | 174 |  |  |  |  |  |
|     | 9.8    | Problems                                                    | 175 |  |  |  |  |  |
| 10. | Syst   | ems of Interacting Electrons - Fermi Liquids                | 179 |  |  |  |  |  |
|     | 10.1   | Introduction                                                | 179 |  |  |  |  |  |
|     | 10.2   | Gas of interacting electrons                                | 179 |  |  |  |  |  |
|     |        | 10.2.1 Kinetic and exchange energies                        | 183 |  |  |  |  |  |
|     |        | 10.2.2 Effective mass                                       | 186 |  |  |  |  |  |
|     | 10.3   | Gas of interacting electrons by second quantization         | 186 |  |  |  |  |  |
|     |        | 10.3.1 Kinetic energy                                       | 189 |  |  |  |  |  |
|     |        | 10.3.2 Energy at first-order perturbation                   | 190 |  |  |  |  |  |
|     |        | 10.3.3 Energy at second-order perturbation                  | 191 |  |  |  |  |  |
|     | 10.4   | Fermi Liquids                                               | 195 |  |  |  |  |  |
|     | 10.5   | Kondo effect                                                | 197 |  |  |  |  |  |
|     | 10.6   | Conclusion                                                  | 198 |  |  |  |  |  |
|     | 10.7   | Problems                                                    | 198 |  |  |  |  |  |
| 11. | Elec   | trons in Crystalline Solids: Energy Bands                   | 203 |  |  |  |  |  |
|     | 11.1   | Wave function of an electron in a periodic potential: Bloch |     |  |  |  |  |  |
|     |        | function                                                    | 204 |  |  |  |  |  |
|     | 11.2   | Theory of almost-free electrons                             | 206 |  |  |  |  |  |
|     |        | 11.2.1 One-dimensional case                                 | 206 |  |  |  |  |  |
|     |        | 11.2.2 Calculation of the energy correction                 | 209 |  |  |  |  |  |
|     |        |                                                             |     |  |  |  |  |  |

|          | 11.2.3    | Interpretation of the forbidden band gap          | 211 |
|----------|-----------|---------------------------------------------------|-----|
|          | 11.2.4    | Three-dimensional case                            | 212 |
| 11.3     | Electro   | ons in a periodic potential: the central equation | 214 |
|          | 11.3.1    | Band filling: classification of materials         | 216 |
|          | 11.3.2    | Semiconductors                                    | 217 |
| 11.4     | Tight-I   | Binding Approximation                             | 221 |
|          | 11.4.1    | One-dimensional case                              | 221 |
|          | 11.4.2    | Three-dimensional case                            | 226 |
|          | 11.4.3    | Velocity, acceleration, effective mass            | 227 |
| 11.5     | Conclu    | sion                                              | 228 |
| 11.6     | Problem   | ms                                                | 230 |
| 12. Syst | tems of I | nteracting Spins: Magnons                         | 237 |
| 12.1     | Spin m    | odels                                             | 237 |
|          | 12.1.1    | Heisenberg model                                  | 237 |
|          | 12.1.2    | Ising, XY and Potts models                        | 239 |
| 12.2     | Spin w    | aves in ferromagnets                              | 241 |
|          | 12.2.1    | Classical treatment                               | 241 |
|          | 12.2.2    | Quantum theory                                    | 246 |
|          | 12.2.3    | Properties at low temperatures                    | 249 |
| 12.3     | Other 1   | magnets                                           | 252 |
|          | 12.3.1    | Antiferromagnets                                  | 252 |
|          | 12.3.2    | Ferrimagnets                                      | 252 |
|          | 12.3.3    | Helimagnets                                       | 252 |
|          | 12.3.4    | Frustrated magnets                                | 254 |
| 12.4     | Conclu    | sion                                              | 256 |
| 12.5     | Problem   | ms                                                | 256 |
| 13. Syst | tems of I | nteracting Spins: Phase Transitions               | 261 |
| 13.1     | Introd    | uction                                            | 261 |
| 13.2     |           | lities                                            | 262 |
|          |           | Order parameter                                   | 262 |
|          | 13.2.2    | Order of the phase transition                     | 264 |
|          | 13.2.3    | Correlation function - Correlation length         | 264 |
|          | 13.2.4    | Critical exponents                                | 265 |
|          | 13.2.5    | Universality class                                | 266 |
| 13.3     | Ferrom    | agnetism in mean-field theory                     | 268 |
|          | 13.3.1    | Mean-field equation                               | 268 |
|          |           |                                                   |     |

#### Contents

|     |      | 13.3.2 Critical temperature                                                                     | 71             |
|-----|------|-------------------------------------------------------------------------------------------------|----------------|
|     |      | 13.3.3 Specific heat                                                                            | 73             |
|     |      | 13.3.4 Susceptibility                                                                           | 74             |
|     |      | 13.3.5 Validity of mean-field theory                                                            | 76             |
|     |      | 13.3.6 Improved mean-field theory: Bethe's approximation 27                                     | 76             |
|     | 13.4 | Landau-Ginzburg theory                                                                          | 78             |
|     |      | 13.4.1 Mean-field critical exponents                                                            | 79             |
|     |      | 13.4.2 Correlation function $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 28$ | 30             |
|     |      | 13.4.3 Corrections to mean-field theory                                                         | 32             |
|     | 13.5 | Renormalization group                                                                           | 34             |
|     |      | 13.5.1 Transformation of renormalization group - Fixed                                          |                |
|     |      | point $\ldots \ldots 28$  | 34             |
|     |      | 13.5.2 Renormalization group applied to an Ising chain . 28                                     | 37             |
|     |      | 13.5.3 Migdal-Kadanoff decimation method and Migdal-                                            |                |
|     |      | 0 11                                                                                            | 39             |
|     | 13.6 |                                                                                                 | 93             |
|     | 13.7 | 1 0                                                                                             | 95             |
|     |      | 13.7.1 Exactly solved spin systems                                                              |                |
|     |      | 13.7.2 Kosterlitz-Thouless transition                                                           |                |
|     |      | 13.7.3 Frustrated spin systems                                                                  | <del>)</del> 6 |
|     | 13.8 |                                                                                                 | 97             |
|     | 13.9 | Problems                                                                                        | 97             |
| 14. | Supe | erconductivity 30                                                                               | )3             |
|     | 14.1 | Introduction                                                                                    | )3             |
|     | 14.2 | Properties of conventional superconductors                                                      | )4             |
|     | 14.3 | Ginzburg-Landau theory of superconductivity                                                     | )5             |
|     | 14.4 | Superconductors of type II                                                                      | 12             |
|     | 14.5 | Bardeen-Cooper-Schrieffer theory                                                                | 16             |
|     |      | 14.5.1 Electron-phonon interaction                                                              | 16             |
|     |      | 14.5.2 Cooper electron pairs- BCS Hamiltonian 31                                                | 19             |
|     |      | 14.5.3 Ground-state wave function                                                               | 23             |
|     | 14.6 | High-temperature superconductivity                                                              | 25             |
|     | 14.7 | Conclusion                                                                                      | 26             |
|     | 14.8 | Problems                                                                                        | 27             |
| 15. | Tran | asport in Metals and Semiconductors 32                                                          | 29             |
|     | 15.1 | Introduction                                                                                    | 29             |
|     |      |                                                                                                 |                |

xvii

| xviii | Statistical | Physics - | Fundamentals | and | Application | to | Condensed | Matter |
|-------|-------------|-----------|--------------|-----|-------------|----|-----------|--------|
|-------|-------------|-----------|--------------|-----|-------------|----|-----------|--------|

| 15.2  | Boltzm  | nann's equation                                               | 329 |
|-------|---------|---------------------------------------------------------------|-----|
|       | 15.2.1  | Classical formulation                                         | 330 |
|       | 15.2.2  | Quantum formulation                                           | 331 |
| 15.3  | Lineari | ized Boltzmann's equation                                     | 333 |
|       | 15.3.1  | Explicit linearized terms                                     | 333 |
|       | 15.3.2  | Relaxation-time approximation                                 | 334 |
| 15.4  | Applica | ations in general transport problems                          | 335 |
|       | 15.4.1  | Heat current                                                  | 335 |
|       | 15.4.2  | Thermo-electric current                                       | 335 |
|       | 15.4.3  | Electric conductivity                                         | 338 |
|       | 15.4.4  | Thermal conductivity                                          | 338 |
|       | 15.4.5  | Seebeck effect                                                | 339 |
|       | 15.4.6  | Peltier effect                                                | 339 |
| 15.5  | Resisti | vity                                                          | 339 |
| 15.6  | Spin-in | dependent transport in metals - Ohm's law                     | 340 |
| 15.7  | Transp  | ort in strong electric fields - Hot electrons                 | 342 |
| 15.8  | Transp  | ort in semiconductors                                         | 347 |
|       | 15.8.1  | Motion of electrons in applied fields - Hall effect .         | 347 |
|       | 15.8.2  | Calculation of the diffusion coefficient by the               |     |
|       |         | Boltzmann's equation                                          | 352 |
|       | 15.8.3  | Transport in semiconductors: Gunn's effect                    | 355 |
|       | 15.8.4  | Conductivity in extrinsic semiconductors - Doping             |     |
|       |         | effects                                                       | 359 |
|       | 15.8.5  | Doped semiconductors: generation, recombina-                  |     |
|       |         | tion, equation of continuity                                  | 362 |
|       | 15.8.6  | $p-n$ junctions - Diodes $\ldots \ldots \ldots \ldots \ldots$ | 365 |
| 15.9  | Spin tr | ansport in magnetic materials                                 | 369 |
| 15.10 | Conclu  | sion                                                          | 370 |
| 15.11 | Proble  | ms                                                            | 370 |

## Solutions of Problems

## 377

|      | of Problems of Part 1                |  |  |  |  |  |  | 379 |
|------|--------------------------------------|--|--|--|--|--|--|-----|
| 16.1 | Solutions of problems of chapter 1   |  |  |  |  |  |  | 379 |
| 16.2 | Solutions of problems of chapter 2   |  |  |  |  |  |  | 387 |
| 16.3 | Solutions of problems of chapter 3   |  |  |  |  |  |  | 408 |
| 16.4 | Solutions of problems of chapter 4   |  |  |  |  |  |  | 424 |
| 16.5 | Solutions of problems of chapter $5$ |  |  |  |  |  |  | 439 |

#### Contents

| 16.6      | Solutions of problems of chapter | 6  |  |  |  |  |  |  | 451 |
|-----------|----------------------------------|----|--|--|--|--|--|--|-----|
| 16.7      | Solutions of problems of chapter | 7  |  |  |  |  |  |  | 458 |
|           |                                  |    |  |  |  |  |  |  |     |
| Solutions | of Problems of Part 2            |    |  |  |  |  |  |  | 467 |
| 17.1      | Solutions of problems of chapter | 8  |  |  |  |  |  |  | 467 |
| 17.2      | Solutions of problems of chapter | 9  |  |  |  |  |  |  | 471 |
| 17.3      | Solutions of problems of chapter | 10 |  |  |  |  |  |  | 483 |
| 17.4      | Solutions of problems of chapter | 11 |  |  |  |  |  |  | 497 |
| 17.5      | Solutions of problems of chapter | 12 |  |  |  |  |  |  | 509 |
| 17.6      | Solutions of problems of chapter | 13 |  |  |  |  |  |  | 525 |
| 17.7      | Solutions of problems of chapter |    |  |  |  |  |  |  | 537 |
| 17.8      | Solutions of problems of chapter | 15 |  |  |  |  |  |  | 550 |
|           |                                  |    |  |  |  |  |  |  |     |

## Appendices

### 573

| Appendix   | A Mathematical Complements and Table of Constants | 575 |
|------------|---------------------------------------------------|-----|
| A.1        | Volume of a sphere in $n$ dimensions              | 575 |
| A.2        | Stirling formula                                  | 576 |
| A.3        | Gaussian integrals                                | 576 |
| A.4        | $\Gamma$ function                                 | 577 |
| A.5        | 3                                                 | 577 |
| A.6        | Other formulas                                    | 577 |
| A.7        | Universal constants                               | 578 |
| Appendix   | B Sommerfeld's Expansion at Low Temperatures      | 579 |
| Appendix   | C Origin of the Heisenberg Model                  | 581 |
| Appendix   | D Hubbard Model: Superexchange                    | 585 |
| Appendix   | E Kosterlitz-Thouless Phase Transition            | 593 |
| Appendix   | F Low- and High-Temperature Expansions of the     |     |
|            | · ·                                               | 601 |
| F.1        | The case of the square lattice                    | 601 |
| F.2        | -                                                 | 606 |
| Bibliograp | hy                                                | 611 |
| Index      |                                                   | 619 |

## List of Problems

Problems of chapter 1: Basic Concepts and Tools in Statistical Physics

- Problem 1. Central limit theorem
- Problem 2. Poisson law (1.32)
- Problem 3. Demonstration of the formulas (1.34) and (1.35)
- Problem 4. Application of the binomial law
- Problem 5. Random walk in one dimension
- Problem 6. Random walk in three dimensions
- Problem 7. Exchange of energy
- Problem 8. Statistical entropy

Problems of chapter 2: Isolated Systems - Micro-Canonical Description

Problem 1. Joule expansion

Problem 2. Exchange of heat

- Problem 3. Distribution of energy on particles
- Problem 4. System of magnetic moments in an applied magnetic field
- Problem 5. Density of states in one and two dimensions

Problem 6. Classical ideal gas in one and two dimensions

Problem 7. Classical ideal gas

Problem 8. Classical harmonic oscillator

Problem 9. System of classical harmonic oscillators

Problem 10. System of quantum harmonic oscillators

Problem 11. Subsystems of quantum harmonic oscillators

Problem 12. Frenkel's defects by micro-canonical method

Problem 13. Schottky's defects by micro-canonical method

Problem 14. Exchange of heat in three dimensions

Problem 15. Binary alloy

xxii Statistical Physics - Fundamentals and Application to Condensed Matter

Problems of chapter 3: Systems at a Constant Temperature - Canonical Description

Problem 1. Calorific capacity  $C_V$ 

Problem 2. Maxwell-Boltzmann approximation

Problem 3. Bi-dimensional classical ideal gas

Problem 4. Classical harmonic oscillators

Problem 5. Quantum harmonic oscillators

Problem 6. Three-level system

Problem 7. Frenkel's defects by canonical method

Problem 8. Schottky's defects by canonical method

Problem 9. Velocity distribution in a classical ideal gas

Problem 10. System of spins in an applied magnetic field

Problem 11. Equilibrium of a vapor-solid system

Problem 12. Harmonic oscillators

Problems of chapter 4: Open Systems at Constant Temperature: Grand-Canonical Description

**Problem 1.** Fluctuations of N

Problem 2. Classical ideal gas in the gravitational field

Problem 3. Two-level system

Problem 4. Degeneracy in the case of fermions

Problem 5. Particle trap

Problem 6. Poisson law by the grand-canonical description

Problem 7. System of interacting electrons

Problem 8. Lattice model for an ideal gas

Problem 9. Adsorption

Problem 10. Adsorption of an ideal gas on the surface of a solid

Problems of chapter 5: Free Fermi Gas

Problem 1. Free Fermi gas at thermodynamic limit

Problem 2. Fermi gas at low temperatures

Problem 3. Free Fermi gas in one and two dimensions

Problem 4. Free Fermi gas in two dimensions

Problem 5. Pressure of a free Fermi gas

Problem 6. Free Fermi gas with internal degrees of freedom

Problem 7. Ultra relativistic ideal gas

Problem 8. Electrons in Sodium

Problem 9. Pauli paramagnetism

#### List of Problems

Problem 10. Electrons in Copper

Problems of chapter 6: Free Boson Gas

Problem 1. Gas of photons

Problem 2. Bose-Einstein condensation

Problem 3. Pressure in a gas of bosons

Problem 4. Two-dimensional gas of bosons

Problem 5. Gas of bosons with internal degrees of freedom

Problem 6. Einstein's model for the vibration of atoms on a lattice

Problem 7. Wien displacement law

Problem 8. Equation of state of a gas of photons

Problems of chapter 7: Systems of Interacting Particles - Method of Second Quantization

Problem 1. Exercise of boson and fermion operators

Problem 2. Exercise on commutation relations of field operators

Problem 3. Exercise of field operators

Problem 4. Exercise of field operators

Problem 5. Boson Hamiltonian

Problem 6. Gas of interacting bosons

Problem 7. Diagonalization of Hamiltonian in second quantization

Problems of chapter 8: Symmetry in Crystalline Solids

Problem 1. Reciprocal lattice of a triangular lattice

Problem 2. Honeycomb lattice

Problem 3. Face-centered cubic lattice - Body-centered cubic lattice

Problem 4. Chain of two types of atom

Problem 5. Periodic potential

Problem 6. Fourier transform of the Coulomb potential

Problem 7. Fourier analysis

Problem 8. Structure factors

Problems of chapter 9: Interacting Atoms in Crystals - Phonons

Problem 1. Demonstration of (9.36)

Problem 2. Chain of two types of atoms

Problem 3. Interaction between next nearest neighbors in a chain

Problem 4. Chain of two types of distance

Problem 5. Phonons in a rectangular lattice

Problem 6. Phonons in a simple cubic lattice

Problem 7. Density of modes in a square lattice

Problem 8. Energy and specific heat at finite temperatures

Problem 9. Phonons in a chain with long-range interaction

Problem 10. Phonons and melting

Problems of chapter 10: Systems of Interacting Electrons - Fermi Liquids

Problem 1. System of two electrons - Fermi hole

Problem 2. Screened Coulomb potential, Thomas-Fermi approximation

Problem 3. Hartree-Fock approximation

Problem 4. Paramagnetic-ferromagnetic transition in an electron gas

Problem 5. Gas of interacting fermions in second quantization

Problem 6. Fermion gas as a function of density

Problems of chapter 11: Electrons in Crystalline Solids - Energy Bands

Problem 1. Perturbation near the boundary of a Brillouin zone

Problem 2. Electrons in a square lattice

Problem 3. Electrons in a rectangular lattice

Problem 4. Energy band in the Kronig-Penney potential model

Problem 5. Tight-binding approximation in one dimension

Problem 6. Tight-binding approximation in a square lattice

Problem 7. Tight-binding approximation in a face-centered cubic lattice

Problems of chapter 12: Systems of Interacting Spins - Magnons

Problem 1. Ground-state spin configuration of a chain of Ising spins

Problem 2. Chain of Heisenberg spins

Problem 3. Commutation relations

Problem 4. Heisenberg model in two dimensions

Problem 5. Magnon-phonon interaction

Problem 6. Magnons in antiferromagnets

Problem 7. Properties at low temperatures of antiferromagnets

Problem 8. Magnons in helimagnets

Problem 9. Triangular antiferromagnet

Problem 10. Villain's model

Problems of chapter 13: Systems of Interacting Spins - Phase Transitions

Problem 1. Ising spin model in the mean-field approximation

#### List of Problems

Problem 2. Next-nearest-neighbor interaction in a centered cubic lattice

Problem 3. Next-nearest-neighbor interaction in a square lattice

Problem 4. System of two spins

Problem 5. Improved mean-field approximation: Bethe's approximation

Problem 6. Chain of Ising spins by micro-canonical method

Problem 7. Chain of Ising spins by canonical method

Problem 8. Mean-field approximation for antiferromagnets

Problem 9. Ferrimagnets by mean-field theory

Problem 10. Chain of Ising spins by exact method

Problems of chapter 14: Superconductivity

Problem 1. Demonstration of Ginzburg-Landau Eqs. (14.13) and (14.14)

Problem 2. Current density  $\vec{J}$ : gauge-invariance

Problem 3. Theory of Gorter-Casimir

Problem 4. Energy of a vortex

Problem 5. Electron gas in a strong magnetic field: Landau's levels

Problems of chapter 15: Transport in Metals and Semiconductors

Problem 1. Effect of magnetic field: Demonstration of Eq. (15.24)

Problem 2. Electrons in a strong electric field: an approximation

Problem 3. Semiconductors: effect of temperature on conductivity

Problem 4. Semiconductor: effect of magnetic field on the gap

Problem 5. Effect of doping in semiconductors

Problem 6. Swallow impurity states in semiconductors

Problem 7. Recombinations in semiconductors

Problem 8. Dielectric relaxation

**Problem 9.** Polarized p - n junction: direct current

Problem 10. Transport in a superlattice

Problem 11. Hall effect - Magnetoresistance