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Foreword

The hook is intended for graduate students and researchers who wish to
learn main properties of magnetic materials in the bulk state and at the
nanometric scale such as thin films and multilayers. The book provides
fundamental theories and methods of simulation to study and to under-
stand these properties in an explicit manner. Exercises and problems are
given for each chapter to help the reader apply the methods to discover
new related phenomena and applications which are complementary to the
lecture. Detailed solutions are provided for self-learning.

In the first part of the book, fundamental methods in magnetism are
presented. The magnetism of systems of independent electrons and atoms
is studied in chapter 1. The system of interacting electrons is studied in
chapter 2 by the Hartree-Fock approximation which leads to the exchange
interaction dependent on spin. This explains the origin of magnetic ex-
change interaction in magnetic materials. In chapter 3, we introduce the
Heisenberg Hamiltonian which was the starting point of the modern theory
of magnetism. The demonstration 1s made by using the method of second
quantization. For readers who are not at ease with operator handling, this
chapter can be omitted at the first reading of the book. The mean-field
theory of systems of interacting spins is developed in chapter 4 where ba-
sic notions on the phase transition are given. The spin-wave theory, or
theory of magnons, 1s studied in chapter 5 where detailed calculations of
the magnon dispersion relation and low-temperature properties are shown.
The Green's function method adapted for the study of magnetie systems is
presented in chapter 6. This technique which can be applied in the whole
range of temperature 1s complementary to the spin-wave theory. The phase
transition theory is described in chapter 7 with the introduection of im-
portant concepts such as the Landau-Ginzburg theory, the renormalization
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group and the finite-size scaling. Monte Carlo simulation methods for the
phase transition are described in chapter 8. Numerical methods consti-
tute nowadays the third approach, next to theory and experiment, to study
complicated and complex systems. Simulations are in particular necessary
for testing theories and for quantitative comparisons with experiments.

The second part of the book is devoted to the application of the the-
ory of magnetism to surface physics. In chapter 9 the magnetism at sur-
faces 1s shown by methods from the spin-wave theory, the Green’s function
technique and Monte Carlo simulations. Numerous examples covering typi-
cal cases in ferromagnets, antiferromagnets, ferrimagnets, helimagnets and
frustrated spin systems are illustrated. Fundamental surface effects are
shown and discussed. These simple models allow us to understand qualita-
tively experimental results observed in often more complicated real systems.
The spin transport is described in chapter 10 where basic formulation of
the Boltzmann's equation is recalled and recent methods of Monte Carlo
simulation to deal with the spin resistivity are explained.

In the third part of the book, we present detailed solutions of problems
given in each chapter. Many problems are important topics in magnetism.

An appendix on elements of statistical physics is also included to make
the book self-contained. Finally, a simple Monte Carlo program is provided
to facilitate the first step in the writing of a simulation program.

The material of this book can be used for one-semester lectures of three
hours weekly in a graduate program of physics. An equivalent amount of
time is needed for students to solve problems with the help of an assistant.

H. T. Diep
Professor of Physics
University of Cergy-Pontoise, France.
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LIST OF PROBLEMS

Chapter 1: Magnetism of Free Electrons and Atoms

1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the
orbital and spin moments of an electron. Determine the total magnetic moment.

2. Zeeman effect

a) Calculate the magnetic moment per atom for Fe, provided the
saturated magnetization under an applied magnetic field equal to
1.7 % 10% A/m, the mass density of Fe p = 7970 kg/m® and the
atomic mass of Fe M = 56.

b) Calculate AE the separation of the energy levels due to the Zeeman
effect on the atomic level corresponding to the wavelength A =
643.8 nm of a cadmium atom. Calculate the variation of frequency
Awv of the initial level.

Numerical application: Calculate AE and Aw for the following
fields ppH= 0.5, 1, and 2 Tesla.

3. Density of states: Calculate the density of states p(E) of a free electron of energy SES in three
dimensions. Show that p(E) is given by Eq. (A.41}).

4. Fermi-Dirac distribution for free-electron gas:

Electrons are fermions which obey the Pauli’s exclusion principle.
Microscopic states follow the Fermi-Dirac statistics. The Fermi-
Dirac distribution is given by (see Appendix A)
1
efE—p) 4
where p i1s the chemical potential, 3 = lTlgT kp the Boltzmann
constant and T the temperature. The function f{E.T,p) is the
number of electrons of the microscopic state of energy E at tem-
perature T'.
Give the properties of f(E,T,u) at T = 0. Plot f(E,T,u) as a
function of E for an arbitrary p(= 0), at T =0 and at low T'.

F(E.T.p) = (1.52)

5. Sommerfeld's expansion: Demonstrate the Sommerfeld's expansion for a free electron gas at low
temperature.

6. Pauli paramagnetism: Calculate the susceptibility of a three-dimensional electron gas in an applied
magnetic field B, at low and high temperatures. One supposes that B is small.

7. Paramagnetism of free atoms for arbitrary J: Consider a gas of N free atoms of momentJ in a volume
V. Find the average of the total magnetic moment per volume unit.

8. Langevin's theory of diamagnetism
9. Langevin's theory of paramagnetism
10. Calculate the variation of the energy gap due to an applied magnetic field in a semiconductor.

11. Paramagnetic resonance



12. Nuclear Magnetic Resonance (NMR).

Chapter 2: Exchange Interaction in an Electron Gas

1. System of two electrons - Fermi hole

2. Theorem of Koopmann

3. Screened Coulomb potential, Thomas-Fermi approximation

4. Paradox of the Hartree-Fock approximation

5. Hydrogen molecule: Calculate the exchange interaction between two electrons of a hydrogen atom.
Chapter 3: Magnetic Exchange Interactions

1. Study properties of a free electron gas with the second quantization.

2. Calculate the energy of an interacting electron gas at the first-order of perturbation with the second
quantization.

3. Hubbard model: one-site case
4. Hubbard model on a two-site system

5. Show that [H,N]=0 where N is the field operator of occupation number defined in (3.36) and H the
Hamiltonian in the second quantization (3.35).

6. Show that ®(r)N=(N+1)dD(r) for both boson and fermion cases.
7. Show that ®+(r)|vac> (“vac" stands for vacuum) is a state in which there is a particle localized at r.

8. Using the equation of motion for ®(r)] with H the Hamiltonian in the second quantization of a system
of fermions, show that we can obtain the Hartree-Fock equation by taking a first approximation
(linearization).

9. Bardeen-Cooper-Schrieffer theory of supraconductivity: Study a gas of N electrons with the reduced
Hamiltonian in the superconducting regime.

10. Magnon-phonon interaction: Calculate the renormalized phonon spectrum taking into account
the magnon-phonon interaction.

Chapter 4: Magnetism: Mean-Field Theory
1. Define the order parameter of an antiferromagnetic lattice of Ising spins.

2. Consider the g-state Potts model defined by the Hamiltonian (4.6) on a square lattice. Define the
order parameter of the g-state Potts model. Describe the ground state and its degeneracy when J>0.
If J<0, what is the ground state for q=2 and q=3? For g=3, find ways to construct some ground states
and give comments. Show that the Potts model is equivalent to the Ising model when g=2.

3. Domain walls: In magnetic materials, due to several reasons, we may have magnetic domains
schematically illustrated in Fig. 4.5. The spins at the interface between two neighboring domains
should arrange themselves in a smooth configuration in order to make a gradual change from one
domain to the other. An example of such a “domain wall" is shown in that figure. Calculate the energy
of a wall of thickness of N spins.



4. Bragg-Williams approximation: The mean-field theory can be demonstrated by the Bragg-Williams
approximation described in this problem.

5. Binary alloys by spin language, mean-field theory

6. Critical temperature of ferrimagnet: Using the mean-field theory, calculate the critical temperature
Ty of the simple model for a ferrimagnet.

7. Improvement of mean-field theory: In the first step, we treat exactly the interaction of two
neighboring spins. In the second step, we use the mean-field theory to treat the interaction of the two-
spin cluster embedded in the crystal. Show that the critical temperature Tc for S = 1/2 is given by

e 2M/kaTe 4 3 9(Z —1)J/kpT =0 (4.83)

8. Interaction between next-nearest neighbors in mean-field treatment

9. Improved mean-field theory - Bethe's approximation: Calculate the critical temperature and make a
comparison with the result from the elementary mean-field theory.

10. Repeat Problem 7 in the case of an antiferromagnet.

11. Calculate the critical field Hc in the following cases: a simple cubic lattice of Ising spins with
antiferromagnetic interaction between nearest neighbors, a square lattice of Ising spins with
antiferromagnetic interaction J; between nearest neighbors and ferromagnetic interaction J; between
next-nearest neighbors.

Chapter 5: Theory of Magnons
1. Prove (5.63)-(5.64).

2. Chain of Heisenberg spins with nearest neighbors and next-nearest neighbors: spectrum and
instability

3. Heisenberg spin systems in two dimensions: spectrum, no ordering in 2D (thorem of Mermin-
Wagner)

4. Prove Egs. (5.143)-(5.145).

5. Consider the Ising spin model on a 'Union-Jack’ lattice, namely the square lattice in which one square
out of every two has a centered site. Define sublattice 1 containing the centered sites, and sublattice
2 containing the remaining sites (namely the cornered sites). Let J; be the interaction between a
centered spin and its nearest neighbors, J, and J; the interactions between two nearest spins on the
y and x axes of the sublattice 2, respectively. Determine the phase diagram of the ground state in the
space (J1,J2,J3)$. Indicate the phases where the centered spins are undefined (partial disorder).

6. Using the method described in section 5.4, determine the ground-state spin configuration of a
triangular lattice with XY spins interacting with each other via an antiferromagnetic exchange J;
between nearest neighbors.

7. Uniaxial anisotropy: Calculate the magnon spectrum. Is it possible to have a long-range magnetic
ordering at finite temperature in two dimensions? (cf. Problem 3).

8. Show that the operators a* and a defined in the Holstein-Primakoff approximation, Egs. (5.35) and
(5.36), respect rigorously the commutation relations between the spin operators.



9. Show that the operators defined in Egs. (5.86)-(5.89) obey the commutation relations.

10. Show that the magnon spectrum (5.125) becomes unstable when the interaction between next-
nearest neighbors defined in ¢, Eq. (5.119), is larger than a critical constant.

Chapter 6: Green's Function Method in Magnetism

1. Give proofs of the formula (6.13).

2. Give the demonstration of Eq. (6.22).

3. Helimagnet by Green's function method: Calculate the magnon spectrum.

4. Apply the Green's function method to a system of Ising spins S=+/-1 in one dimension, supposing a
ferromagnetic interaction between nearest neighbors under an applied magnetic field.

5. Apply the Green's function method to a system of Heisenberg spins on a simple cubic lattice,
supposing ferromagnetic interactions between nearest neighbors and between next-nearest
neighbors.

6. Calculate the magnon spectrum in Heisenberg triangular antiferromagnet: Green's function
method.

7. Study the free electron gas by Green's function method.
Chapter 7: Phase Transition

1. Solution for an Ising chain: Calculate the partition function of a chain of N Ising spins using the
periodic boundary condition. Calculate the free energy, the averaged energy and the heat capacity as
functions of the temperature. Show that there is no phase transition at finite temperature.

2. Renormalization group applied to an Ising chain: Study by the renormalization group a chain of Ising
spins with a ferromagnetic interaction between nearest neighbors. Show that there is no phase
transition at finite temperature.

3. Transfer matrix method applied to an Ising chain: Study by the transfer matrix method the chain of
Ising spins in the previous exercise using the periodic boundary condition.

4. Study the low- and high-temperature expansions of the Ising model on the square lattice. The low-
and high-temperature expansions are useful not only for studying physical properties of a spin system
in these temperature regions, but also for introducing a new concept called duality which allows to
map a system of weak coupling into a system of strong coupling, as seen in this problem.

5. Critical temperatures of the triangular lattice and the honeycomb lattice by duality: Consider the
triangular lattice with Ising spins with a ferromagnetic interaction between nearest neighbors.
Construct its dual lattice. Calculate the partition functions of the two lattices. Deduce the critical
temperature of each of them by following the method outlined in the previous problem.

6. Villain's model: We study the ground state spin configuration of the 2D Villain's model with XY spins
definedin Fig. 7.7. Write the energy of the elementary plaquette. By minimizing this energy, determine
the ground state as a function of the antiferromagnetic interaction Jar=- nJg where n is a positive
coefficient. Determine the angle between two neighboring spins as a function of $S\etaS. Show that the
critical value of  beyond which the spin configuration is not collinear is 1/3.

7. Give the proofs of Eq. (7.85).



8. Critical line of an antiferromagnet in an applied magnetic field: In chapter 4 we have seen that an
antiferromagnet in a field can have a phase transition at a finite temperature T, in contrast to a

ferromagnet. We calculate in this exercise T¢ as a function of a weak field H.

Chapter 8: Methods of Monte Carlo Simulation

1. Write a program for Ising model using the model program shown in Appendix B by adding the
calculation of the heat capacity and the magnetic susceptibility. Modify it for the case of a simple
cubic lattice and a body-centered-cubic lattice.

2. Write a simple program for the classical Heisenberg spin model.

3. Write the instruction which realizes the energy histogram H(E) in the program for the Ising model
shown in Appendix B.

4. Program to search for the ground state: We can determine in most cases the ground state of a spin
system with Ising, XY, Heisenberg or Potts model by the steepest-descent method: at each spin, we
minimize its energy by aligning it along its local field. Describe the necessary steps to make a program
to this end. Write a program which realizes the above steps. Apply it to the Ising model on a square

lattice with nearest-neighbor interaction J; and next-nearest neighbor interaction J;. Determine the

phase diagram at temperature T=0 in the space (J1,J3).
Chapter 9: Magnetic Properties of Thin Films

1. Surface magnon: Calculate the surface magnon modes in the case of a semi-infinite ferromagnetic

crystal of body-centered cubic lattice for ky=ky=0, 7/a in using the method presented in section 9.4.

2. Critical next-nearest-neighbor interaction: Calculate the critical value of ¢ defined in section 9.4 for
an infinite crystal.

3. Uniform magnetization approximation: Show that with the hypothesis of uniform layer-

magnetization [Eq. 9.50], the energy eigenvalue E; is proportional to M.

4. Multilayers - critical magnetic field: One considers a system composed of three films A, B and C, of
Ising spins with respective thicknesses N1, N» and N3. The lattice sites are occupied by Ising spins
pointing in the +\- z direction perpendicular to the films. The interaction between two spins of the
same film is ferromagnetic. Let J1, Jo and J3 the magnitudes of these interactions in the three films.
One supposes that the interactions at the interfaces A-B and B-C are antiferromagnetic and both equal

to Js. One applies a magnetic field along the z direction. Determine the critical field above which all

spins are turned into the field direction. For simplicity, consider the case J1=J; = J3.

5. Mean-field theory of thin films: Calculate the layer magnetizations of a 3-layer film by the mean-
field theory (cf. chapter 4). One supposes the Ising spin model with values +\- 1/2 and a ferromagnetic
interaction J for all pairs of nearest neighbors.

6. Holstein-Primakoff method: Using the Holstein-Primakoff method of chapter 5 for a semi-infinite
crystal with the Heisenberg spin model, write the expression which allows us to calculate the surface
magnetization as a function of temperature. Show that a surface mode of low energy (acoustic surface
mode) diminishes the surface magnetization.



7. Frustrated surface - surface spin rearrangement: Consider a semi-infinite system of Heisenberg
spins composed of stacked triangular lattices. Suppose that the interaction between nearest neighbors
SIS is everywhere ferromagnetic except for the spins on the surface: they interact with each other via

n antiferromagnetic interaction Js. Determine the ground state of the system as a function of Js/JS.

8. Ferrimagnetic film: Write the equations of motion for a five-layer ferrimagnetic film of body-
centered cubic lattice, using the model and the method presented in section 9.4. Consider the cases

kx=ky=0, m/a. Solve numerically these equations to find surface and bulk magnons.
Chapter 10: Monte Carlo Simulation of Spin Transport

1. Effect of magnetic field: demonstrate Eq. (10.24).

2. Ohm's law: demonstrate Eq. (10.29).

3. Hall effect - Magneto-resistance: The general expression of the current density in a system under
an applied electric field € and an external magnetic field B can be written as a series of & and B:

Ji = Z'Jr'_,lf_.: + Z TijlEj By + Z Tijlm €y BB

j b j.lm

where Gjj is the “"normal” or “ordinary" electric conductivity tensor, and jji denotes the conductivity
tensor due to the interaction between € and B. When & . B=0, we have the geometry of the Hall effect.
Gijim is the conductivity tensor due to the interaction between € and B at the second order. This is at

the origin of the magneto-resistance. In this problem, we study the cases of weak, moderate and strong
fields.

4. Using the Boltzmann's equation study the case of a strong field.



